Appendix 1: Developing A Set Of Solubility Rules (Student BLM) Develop your own procedure to create a set of solubility rules. The solutions the class will use include: Set A: silver ions (Ag^+) , barium ions (Ba^{2+}) , sodium ions (Na^+) , ammonium ions (NH_4^+) , calcium ions (Ca^{2+}) , chloride ions (Cl^-) , carbonate ions (CO_3^{2-}) , sulfate ions (SO_4^{2-}) , nitrate ions (NO_3^-) , and phosphate ions (PO_4^{3-}) Set B: zinc ions (Zn^{2+}) , iron ions (Fe^{3+}) , sodium ions (Na^+) , magnesium ions (Mg^{2+}) , potassium ions (K^+) , chloride ions (Cl^-) , hydroxide ions (OH^-) , bromide ions (Br^-) , carbonate ions (CO_3^{2-}) , and acetate ions $(C_2H_3O_2^{-})$ **Hint:** Before you begin mixing solutions, set up a grid to organize your observations. ## Follow-up questions - 1. Chemists have developed a set of solubility rules with respect to the solubility of anions with numerous cations. - a) List the cations that did not form any precipitates. - b) For each anion, list the cations with which it was insoluble (formed a precipitate). - 2. List the set of solubility rules that you have developed.